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Abstract

1. Purpose and Question

This study applies text mining techniques to explore topics in TED Talks videos.
Two automated clustering methods - community detection and LDA topic model — were
used to perform topic extraction based on the type of text data in various fields of TED
Talks videos. The purpose of topic extraction is to find the topic structure that implies
semantic connections between the data from the content characteristics of the input.
Automated topic extraction can be realized by a variety of unsupervised learning methods,
such as cluster analysis, community detection, and topic models. The results of topic
extraction can help users understand the coverage of topics of the data collection, identify
similarities and differences between data, and improve the efficiency and
comprehensibility of information retrieval.

TED is a non-profit organization dedicated to spreading ideas in short and powerful
talks. The early emphasis of the talks was on technology, entertainment, and design, but
now they cover topics from all subjects and fields. The reason for choosing TED Talks as
our data collection for topic extraction is that, in addition to the wide range of the topics
they cover, the video content contains many fields that can be used for topic extraction.
Despite different aspects of the topic information various fields can provide, fields of
different data types require different topic extraction methods to ensure that the results
are of good quality and that effective interpretations can be made from them.

As a result, it remains an empirical question whether different methods applied in
different fields might generate relevant or similar results, and the purpose of the study is
to investigate whether the results define equivalent topic ranges of the data set and yet
yield complementary topics that make the interpretation of the topic structure more

complete.
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2. Dataset

All 5050 TED Talks data was collected using a Python program on April 08, 2021.
Topic extraction was performed on three data fields of the videos: "related tags", "video
descriptions" (combined with text from the fields "talk description" and "speaker: why
listen"), and "transcript".

3. Method

For topic extraction from “related tags,” a co-word network based on which was
constructed using Gephi for community detection. To find communities that best
represent topics implied in “related tags,” different filtering strategies were used to
generate a community detection result with a higher modularity score and better
interpretability. As for “talk description” and “transcript,” since texts in which are both in
natural language forms, data preprocessing including removing punctuations, deleting
stop words, and lemmatization were required before applying Gensim for topic modeling.
Coherence scores of different models trained under different topic numbers would be
considered when selecting the model that best represents the topic extraction result of the
data field. The result of a topic extraction is some topics with their own sets of keywords;
thus, the topics would be named by inferring the meaning behind the combination of their
keywords.

Lastly, the relevance and similarities between topics from three extraction results
would be discussed both qualitatively and quantitatively. The qualitative analysis
involves the comparison of topics with similar namings, and the quantitative analysis
would be performed by generating a vector coordinate for each topic based on related

tags and then calculating the cosine similarities between them.
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4. Results

The result of community detection on the related tag network reveals 13 topics, and
the best topic models for video description and transcript are of 25 and 40 topics,
respectively. Most topics in LDA topic models can correspond to a certain tag group in
the community detection result. Relevance or similarities between topics can be found
either from topic names or by calculating their cosine similarities, and the latter shows
that topics extracted from two natural text data fields by LDA topic models share more
similar topics and also higher similarity scores. Overall, the results suggest that all three
topic extraction methods can unveil equivalent topic range implied in the content of TED
Talks videos.
S. Conclusion

Among the three results, however, groups generated by community detection
express the broader meaning of topics as related tags, the data source, carry not only
labeling but retrieval and classification functions on the TED Talks website, and
visualization has the advantage of giving a readily accessible overview of the topics
covered. Topics of video description and transcript in videos, which were discovered by
the LDA topic model, are more delicate and precise as the source data are in natural
language form. Keywords in topics are found to be able to show nuances in between
topics and thus help give a more complete interpretation, and videos with the highest
probabilities to appear in topics also help understand the core meaning of the topics.
Nevertheless, there is still a little difference between the two LDA model results. Because
transcripts are text data directly reflecting video contents and therefore can be seen as
their surrogates, topics generated from them are more intuitive, making it easier to
interpret the result.
Kewords: TED Talks; Co-word Network; Community Detection; LDA Topic Modeling;

Topic Extraction
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